
MicroBitcoin: decentralized peer-to-peer
payment platform for the micro-economy

Abstract. MicroBitcoin is decentralized blockchain intended to serve for micro-economy payments. It
inherits Bitcoin UTXO set and initially has been implemented as an hard fork. After more than one
year after launch some limitations began to arise, in particular extensive size of blockchain inherited
from Bitcoin network and poor performance of PoW algorithm during block validation. To solve those
issues on 9 October 2019 community switched to new network essentially abandoning old one. New
MicroBitcoin network is featuring UTXO set snapshot, smaller block size, new block reward formula
and cpu focused Proof-of-Work algorithm.

1. Prerequisites of new network launch
Initially original MicroBitcoin network has been launched 11 July 2018 as an hard fork of Bitcoin network.
Main focus was on ASIC[1] resistance and faster block time to be more suitable for micro-payments. To
make interaction with currency units easier decimal poin was shifted by 4 places making 1 BTC equal to
10,000 MBC.

First MicroBitcoin block was mined at 11 July 2018 causing hardfork by replacing default sha256d hash
function with NIST SHA-3 candidate Groestl[2] algo which didn't had ASIC implementation at the time and
because of that was considered ASIC resistant. Time proven that this assumption was wrong after Baikal
released[3] BK-G28 featuring Groestl support on 26 October 2018. Since this time BK-G28 miners had been
main source of hash power on MicroBitcoin network fundamentally corrupting decentralization. After
extensive research we stopped on Rainforest[4] PoW algo by Bill Schneider. On 6 March 2019 MicroBitcoin
network hardforked to Rainforest and on 7 May 2019 to second version of Rainforest (also known as RFv2)
which fixed some flaws of original algo.

After a while it became clear that Rainforest v2 algorithm is way to slow during PoW validation phase and in
combination with more than 200 GB of blockchain size make it very hard to sync/keep full node of
MicroBitcoin essentially undermining decentralization. This situation became the main reason behind
launch of new network.

2. Snapshot
Since MicroBitcoin network operates on UTXO[5] model where final address balance is basically sum of all
unspent outputs, moving balances from one network to another is rather trivial task.

We took all UTXOs starting from block 525,000 (first MBC block) to block 1,137,200, copied them and
merged. For example if address had 3 unspent outputs in old network, they had been merged into one
output with sum of amounts.

Example:

All snapshoted outputs is located in genesis[6] block of new MicroBitcoin network and can be checked in
explorer.

3. Supply and emission
At the moment of new network launch total supply was over-minted for the current userbase, big chunk of
funds haven't been moved since hard fork. To improve this situation coins which haven't been moved since
block 525,000 (initial network launch height) hasn't been snapshoted and essentially burned. In total
44,386,397,362.4252 MBC has been activated. Approximately 2,700,000 BTC has moved since hard fork.

For better distributrion of new coins block emission schedule has been adjusted. Instead of halvings[7]
which reduces block reward by 50% each 4 years new reward smoothly decrease each new block reward.
Base reward is decaying by 30% each epoch which is around 2 years.

Graph for reward and mining supply:

Reward formula implementation in C++.

https://microbitcoinorg.github.io/explorer/%23/block/14c03ecf20edc9887fb98bf34b53809f063fc491e73f588961f764fac88ecbae

Total supply is limited to 61,000,000,000 MBC from which 44,386,397,362.4252 MBC is snapshot amount
from old network. The rest 16,613,602,638 MBC will be mined in around next 100 years.

4. Block size
To make network more reliable, prevent block spamming and create better and fair fee market in terms of
1 block per minute model block size has been decreased to 300kb. Implementation is inspired by Bitcoin
Core developer Luke Dashjr proposal[8].

5. Power2B Proof-of-Work algorithm

To encourage decentralization and idea of "one-CPU-one-vote" proposed[9] by Satoshi in original
whitepaper of Bitcoin we used modified YesPower[10] hash function called Power2B[11] which was
designed to be CPU-friendly, GPU-unfriendly, and FPGA/ASIC-neutral. It combines computationally
expensive and sequential memory-hard hashing in a way that slows down GPUs to CPU-like speeds, and
limits potential advantages for FPGAs and ASICs. So far YesPower proven to be decent CPU focused
algorightm by providing security for dozens different cryptocurrencies.

Our Power2B modification replaces SHA256 based PBKDF2 and HMAC with blake2b[12] based
implemetations in essence keeps YesPower original design intact. This has been done to make
implemetations of FPGAs and ASICs for original YesPower incompatible with Power2B. This would require
developers to create MicroBitcoin specific implementations of software/hardware and strengthening
network security overall as an result.

6. Difficulty adjustment algorithm
MicroBitcoin network uses LWMA3[13] difficulty adjustment algorithm authored by zawy12. It sets difficulty
by estimating current hashrate by the most recent difficulties and solvetimes. It divides the average
difficulty by the Linearly Weighted Moving Average (LWMA) of the solvetimes. This gives it more weight to
the more recent solvetimes. It is designed for small coin protection against timestamp manipulation and
hash attacks. The basic equation is:

7. Comparison to other Bitcoin hard forks
Here is table chart with comparison MicroBitcoin with other Bitcoin hard forks.

Keep in mind that MicroBitcoin have 4 decimal places instead of 8 like in case of Bitcoin. So in terms of
Satoshi units[14] supply of MicroBitcoin is only 3x larger than supply of Bitcoin.

8. Token Layer

OP_RETURN

Blockchain technology, due to its inherent design, presents a unique set of issues when trying to implement
new features. In order to preserve consensus when adding new features, all network peers must agree on a
new set of rules - a hard fork. While building the Token Layer for MicroBitcoin, we took into account our
previous experiences with hard forks and decided to use another approach: subnetworks built using
blockchain data embedding. This is the perfect way to introduce new features like tokens within the existing
ecosystem without hard forking or introducing new breaking changes to the existing consensus.

8.1 Overview
As the network grows, new ideas for features and improvements will appear. This usually consists of
modifying the underlying consensus rules and requiring the majority of the network peers to update their
software. This is, at the very least, inconvenient for network members and requires investing time and
effort into maintenance. Furthermore, the community may not accept the newly proposed changes, which
would lead to a network split, which is considered undesirable in most circumstances as it fragments
community.

Soft fork is one solution to this problem, which was introduced by Bitcoin developers. The gist of it is adding
new rules to consensus, making previously valid blocks invalid, for example, by limiting block reward after a
certain percentage of the network accepts new rules by updating to a new software version. While pre-soft
fork software can still process blocks created by update nodes as they are still part of consensus, new
nodes won't accept blocks created by old software as it breaks newly established and agreed-upon rules.
On the other side, hard forking is modifying rules in such a way that previously invalid blocks become valid,
for example, by adding token functionality to the network and essentially introducing new kinds of
transactions with their own structure[18].

The emergence of layer 2 networks resulted from the limitations imposed on the underlying blockchain
networks and the obstacles posed by both soft and hard forks. They introduce novel features in a distinct
network that is governed by distinct rules and governed by consensus, which operates independently of the
base network. A notable example of such an approach is the Lightning network[19] built on top of the
Bitcoin blockchain, which facilitates instant payments off-chain and uses the base network to finalize those
payments by broadcasting transactions and closing the payment channel. Omni Layer[20] is another good
example of this approach to introducing new features to the underlying network without breaking
consensus. It works by embedding its own payloads in output. This allows anyone to go
through the Bitcoin blockchain and rebuild the current state of the Omni Layer by processing encoded
payloads.

8.2 Design
Considering previous approaches of introducing new features we decided to use blockchain data
embedding via output as the basis for our Token Layer. opcode is a standard way
of attaching extra data to transactions is to add a zero-value output with a scriptPubKey consisting of

followed by data[21].

It's possible to attach up to 83 bytes of encoded payload in single transaction using this approach. For
payload encoding, we decided to use Message Pack[22] as it provides a compact and efficient way to
serialize and transmit data. Since we are working with rather limited storage capacity per transaction,
efficient data storage is crucial.

OP_RETURN OP_RETURN

OP_RETURN

OP_RETURN

COLLECTION#ART

A protocol is a set of rules and conventions that define how data is formatted, transmitted, and processed
over the MicroBitcoin network. It enables all Token Layer clients to understand and interpret the
information they exchange, allowing for seamless and standardized communication between them.

Token Layer works by scanning the MicroBitcoin blockchain. During this process, the client goes through
each block, looking for outputs in its transactions. If such output is found, the Token Layer
client checks the first byte and compares it with the current chain ID, a unique identifier that is used to
differentiate between different subnetworks. The chain ID byte is followed by a protocol payload encoded
using Message Pack.

Token Layer uses Bitcoin-style satoshis to represent all amounts along with decimals specified by the token
creator, which can range from to 8 . For example, 10,000 TEST tokens with 2 decimals would be
represented as 1,000,000 satoshis. The easiest and most obvious data type to store satoshi values in
Message Pack is binary, which represents a byte array[23] since we can specify how much space we would
need for our value field. We will convert integer values into a big-endian 10-byte array, which should be
enough to cover most of the Token Layer requirements.

The token ticker has a set of limitations imposed on it, such as that it can only be uppercase, have Latin
letters, numbers and and symbols. The length of the token ticker should be in the range of 3-32
characters. It also solves a couple different issues that are present in other similar solutions. For example, it
can be used to represent different token types: root, sub, unique and owner.

Root token is base token type which can be used without any limitations. When root token created with
field set to true Token Layer automatically creates owner token which is denoted by symbol

at the end of ticker: (root) and (owner).

Owner token is used to represent ownership over root token as well as authorizing such actions as issuance
of additional supply and creation of sub/unique tokens on top of root name. When issuing sub token same
rules are applied.

Sub token can only be issued on top of an existing root token by its owner and is denoted by symbol. As
an illustrative use case, someone can issue
authenticity of that token.

token and issue which can prove the

A unique token is used to represent non-fungible things and can only be created in 1 unit with 0 decimals,
denoted by symbol. As well as sub tokens, it requires a root token to be issued on top of them. An
example of such an approach would be someone issuing
top of it.

root token and on

Lastly, in order to manage such a complex system, the Token Layer has a governance system in place. It has
an admin address that can issue special types of transactions that can ban, unban, change token creation
or issuance costs, and update the fee address that will receive funds from token issuance. The admin
address is set on network launch and can be updated only through hardfork. This system would ensure
that such events as hacks and changes in underlying currency price fluctuations could be mitigated swiftly.

TEST

COLLECTION

8.3 Protocol
Each protocol message has two permanent fields: version and category. The version field can be used in the
future if modifications to the token layer protocol are needed. The category field defines what each given
message does, for example, token issuance, transfer, burning, etc. Depending on the category, the message
payload can contain additional fields like token metadata or the transfer amount. Unless the data structure
matches all requirements for given category, the message will be discarded.

Create token message

This message is responsible for creating new tokens. It requires additional output to the governance
address in order to pay the creation fee, this is done to prevent spam and token ticker squatting. Each
token ticker is unique and can be used only once. Tokens have
an additional owner token, for example, if the user creates token

field that, if set to true, creates
he would also receive owner token

Category fields:

reissuable : bool - defines whether owner can increase supply of this token

value : bytes - token supply value encoded in bytes

decimals : int - token decimal places

ticker : str - token ticker

Example raw data:

Example encoded message:

Issue token message

This message is responsible for increasing token supply. It can be use only if token

is set to

true and user has owner token. This category required additional output to the governance address in
order to pay the creation fee.

Category fields:

value : bytes - token additional supply value encoded in bytes

ticker : str - token ticker

Example raw data:

TEST

Example encoded message:

Transfer token message

This category is responsible for transferring tokens between address balances. It requires additional output
to the receiver address with a small marker amount, which would help Token Layer clients identify the
transfer receiver. If field is set to value, the receiver won't be able to spend the tokens he
received until the specified height.

Category fields:

lock : int or null - optional block height until which transfer will be locked and unspendable

value : bytes - token transfer value encoded in bytes

ticker : str - token ticker

Example raw data:

Example encoded message:

Burn message

This message is responsible for burning tokens on address balance. It requires no additional outputs and
can be performed by any token holder.

Category fields:

value : bytes - token burn value encoded in bytes

ticker : str - token ticker

Example raw data:

Example encoded message:

Cost message

This admin message is responsible for changing MBC cost of token creation/issuance. Can be used only by
Token Layer governance addresses.

Category fields:

value : bytes - MBC cost value encoded in bytes

category : str - cost category (create/issue)

type : str - token type (root/sub/unique)

Example raw data:

Example encoded message:

Ban message

This admin message is responsible for banning token balances at the specified address. It requires
additional output to the ban address with a small marker amount, which would help Token Layer clients
identify address to be banned. No additional fields are required.

Example raw data:

Example encoded message:

Unban message

This admin message is responsible for unbanning token balances at the specified address. It requires
additional output to the unban address with a small marker amount, which would help Token Layer clients
identify address to be unbanned. No additional fields are required.

Example raw data:

Example encoded message:

Fee address message

This admin message is responsible for updating fee address which would receive MBC payments for token
creation and issuance. It requires additional output to the new fee address with a small marker amount,
which would help Token Layer clients identify new fee address. No additional fields are required.

Example raw data:

Example encoded message:

References
[1] https://en.bitcoin.it/wiki/ASIC
[2] https://www.groestl.info
[3] https://bitcointalk.org/index.php?topic=5057818.0
[4] https://www.slideshare.net/bschn2/the-rainforest-algorithm
[5] https://www.investopedia.com/terms/u/utxo.asp
[6] https://en.bitcoin.it/wiki/Genesis_block
[7] https://en.bitcoin.it/wiki/Controlled_supply
[8] https://github.com/bitcoin/bitcoin/compare/v0.17.1...luke-jr:example_300k-0.17
[9] https://bitcoin.org/bitcoin.pdf
[10] https://www.openwall.com/yespower/
[11] https://github.com/MicroBitcoinOrg/Power2B
[12] https://blake2.net/
[13] https://github.com/zawy12/difficulty-algorithms/issues/3

https://en.bitcoin.it/wiki/ASIC
https://www.groestl.info/
https://bitcointalk.org/index.php?topic=5057818.0
https://www.slideshare.net/bschn2/the-rainforest-algorithm
https://www.investopedia.com/terms/u/utxo.asp
https://en.bitcoin.it/wiki/Genesis_block
https://en.bitcoin.it/wiki/Controlled_supply
https://bitcoin.org/bitcoin.pdf
https://www.openwall.com/yespower/
https://github.com/MicroBitcoinOrg/Power2B
https://blake2.net/
https://github.com/zawy12/difficulty-algorithms/issues/3

[14] https://en.bitcoin.it/wiki/Satoshi_(unit)
[15] https://bitcoincore.org/
[16] https://github.com/btcsuite/btcd
[17] https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
[18] https://petertodd.org/2016/forced-soft-forks
[19] https://lightning.network/
[20] https://www.omnilayer.org/
[21] https://en.bitcoin.it/wiki/Script
[22] https://msgpack.org/index.html
[23] https://github.com/msgpack/msgpack/blob/master/spec.md#type-system

Links
Official Website: https://microbitcoin.org
GitHub: https://github.com/MicroBitcoinOrg/
Explorer: https://microbitcoinorg.github.io/explorer/#/
Web Wallet: https://microbitcoinorg.github.io/wallet/#/
API: https://api.mbc.wiki/
Discord: https://discord.gg/8zg2nTV
Telegram: https://t.me/microbitcoinorg
Twitter: https://twitter.com/MicroBitcoinOrg
Forum: https://mbc.wiki
BitcoinTalk: https://bitcointalk.org/index.php?topic=3982489.msg37769108
Reddit: https://www.reddit.com/r/MicroBitcoinOrg/
Token Layer: https://github.com/MicroBitcoinOrg/Tokens

https://en.bitcoin.it/wiki/Satoshi_(unit)
https://bitcoincore.org/
https://github.com/btcsuite/btcd
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://petertodd.org/2016/forced-soft-forks
https://lightning.network/
https://www.omnilayer.org/
https://en.bitcoin.it/wiki/Script
https://msgpack.org/index.html
https://github.com/msgpack/msgpack/blob/master/spec.md#type-system
https://microbitcoin.org/
https://github.com/MicroBitcoinOrg/
https://microbitcoinorg.github.io/explorer/%23/
https://microbitcoinorg.github.io/wallet/%23/
https://api.mbc.wiki/
https://discord.gg/8zg2nTV
https://t.me/microbitcoinorg
https://twitter.com/MicroBitcoinOrg
https://mbc.wiki/
https://bitcointalk.org/index.php?topic=3982489.msg37769108
https://www.reddit.com/r/MicroBitcoinOrg/
https://github.com/MicroBitcoinOrg/Tokens

