Major Transitions in the History of the Human Transformation of the Biosphere

From P2P Foundation
Jump to navigation Jump to search

* Article: The major transitions in the history of human transformation of the biosphere. By A. Takács-Sánta. Human Ecology Review 11(1):51-66

URL = https://www.researchgate.net/publication/287516358_The_major_transitions_in_the_history_of_human_transformation_of_the_biosphere#:~:text=Six%20such%20transitions%20are%20identified,fuels%20as%20primary%20energy%20sources.


Abstract

"The aim of this interdisciplinary review is to provide a new framework for the research in the history of human transformation of the biosphere. It focuses on the major transitions, which resulted in a considerable increase in our species' impact on the biosphere (in relation to the state before the transition).


Six such transitions are identified, in chronological order these are:

1) the use of fire,

2) language,

3) agriculture,

4) civilization (states),

5) European conquests and

6) the technological-scientific (r)evolution and the dominance of fossil fuels as primary energy sources. Such an inquiry of our biosphere transforming activities may be of great importance in establishing ecologically sustainable societies."


More information

  • Article: Major transitions in ‘big’ history. Robert Aunger. Technological Forecasting & Social Changed, 2007

URL = https://www.academia.edu/3007922/Major_transitions_in_big_history

"‘Big’ history treats events between the Big Bang and contemporary technological life on Earth as a single narrative, suggesting that cosmological, biological and social processes can be treated similarly. An obvious trend in big history is the development of increasingly complex systems. This implies that the degree to which historical systems have deviated from thermodynamic equilibrium has increased over time. Recent theory suggests that step-wise changes in the work accomplished by a system can be explained using steady-state non-equilibrium thermodynamics. This paper argues that significant macro-historical events can therefore be characterized as transitions to steady states exhibiting persistently higher levels of thermodynamic disequilibrium which result inobservably novel kinds or levels of organisation. Further, non-equilibrium thermodynamics suggests that such transitions should have particular temporal structures, beginning with sustainable energy innovations which result in novelties in organisation and in control mechanisms for maintaining the new organisation against energy fluctuations. We show how events in big history which qualify as historically significant by these criteria exhibit this internal structure. Big history thus obeys law-like processes, resulting in a common pattern of major transitions between steady-state historical regimes. This common process from cosmological to contemporary times makes big history a viable and relevant field of scientific study."