Open Source Biotechnology: Difference between revisions

From P2P Foundation
Jump to navigation Jump to search
No edit summary
No edit summary
Line 59: Line 59:




==The Economist on What is already happening==
'''Open Source Biotechnology''', from The Economist
“open-source approaches have emerged in biotechnology already. The international effort to sequence the human genome, for instance, resembled an open-source initiative. It placed all the resulting data into the public domain rather than allow any participant to patent any of the results. Open source is also flourishing in bioinformatics, the field in which biology meets information technology. This involves performing biological research using supercomputers rather than test-tubes. Within the bioinformatics community, software code and databases are often swapped on “you share, I share" terms, for the greater good of all. Evidently the open-source approach works in biological-research tools and pre-competitive platform technologies. The question now is whether it will work further downstream, closer to the patient, where the development costs are greater and the potential benefits more direct. Open-source research could indeed, it seems, open up two areas in particular. The first is that of non-patentable compounds and drugs whose patents have expired. These receive very little attention from researchers, because there would be no way to protect (and so profit from) any discovery that was made about their effectiveness. To give an oft-quoted example, if aspirin cured cancer, no company would bother to do the trials to prove it, or go through the rigmarole of regulatory approval, since it could not patent the discovery. (In fact, it might be possible to apply for a process patent that covers a new method of treatment, but the broader point still stands.) Lots of potentially useful drugs could be sitting under researchers' noses.


The second area where open source might be able to help would be in developing treatments for diseases that afflict small numbers of people, such as Parkinson's disease, or are found mainly in poor countries, such as malaria. In such cases, there simply is not a large enough market of paying customers to justify the enormous expense of developing a new drug. America's Orphan Drug Act, which provides financial incentives to develop drugs for small numbers of patients, is one approach. But there is still plenty of room for improvement—which is where the open-source approach might have a valuable role to play."
(http://www.economist.com/displaystory.cfm?story_id=2724420)




Line 77: Line 70:
(http://business-times.asia1.com.sg/sub/views/story/0,4574,144880,00.html)
(http://business-times.asia1.com.sg/sub/views/story/0,4574,144880,00.html)


==The Economist on What is already happening==
'''Open Source Biotechnology''', from The Economist
“open-source approaches have emerged in biotechnology already. The international effort to sequence the human genome, for instance, resembled an open-source initiative. It placed all the resulting data into the public domain rather than allow any participant to patent any of the results. Open source is also flourishing in bioinformatics, the field in which biology meets information technology. This involves performing biological research using supercomputers rather than test-tubes. Within the bioinformatics community, software code and databases are often swapped on “you share, I share" terms, for the greater good of all. Evidently the open-source approach works in biological-research tools and pre-competitive platform technologies. The question now is whether it will work further downstream, closer to the patient, where the development costs are greater and the potential benefits more direct. Open-source research could indeed, it seems, open up two areas in particular. The first is that of non-patentable compounds and drugs whose patents have expired. These receive very little attention from researchers, because there would be no way to protect (and so profit from) any discovery that was made about their effectiveness. To give an oft-quoted example, if aspirin cured cancer, no company would bother to do the trials to prove it, or go through the rigmarole of regulatory approval, since it could not patent the discovery. (In fact, it might be possible to apply for a process patent that covers a new method of treatment, but the broader point still stands.) Lots of potentially useful drugs could be sitting under researchers' noses.
The second area where open source might be able to help would be in developing treatments for diseases that afflict small numbers of people, such as Parkinson's disease, or are found mainly in poor countries, such as malaria. In such cases, there simply is not a large enough market of paying customers to justify the enormous expense of developing a new drug. America's Orphan Drug Act, which provides financial incentives to develop drugs for small numbers of patients, is one approach. But there is still plenty of room for improvement—which is where the open-source approach might have a valuable role to play."
(http://www.economist.com/displaystory.cfm?story_id=2724420)


=More Information=
=More Information=

Revision as of 07:29, 11 July 2007

URL = http://rsss.anu.edu.au/~janeth/


Definition

"Open Source licensing is a style of intellectual property management that has evolved in the past half-decade out of the Free Software movement, initiated in the early 1980s in response to restrictive copyright licensing practices adopted by commercial software developers. The Open Source approach seeks to preserve ongoing community access to proprietary software tools without precluding or discouraging commercial involvement in their development.

"Open Source Biotechnology" refers to the possibility of extending the principles of commerce-friendly, commons-based peer production exemplified by Open Source software development to the development of research tools in biomedical and agricultural biotechnology." (http://rsss.anu.edu.au/~janeth/)


Discussion

Janet Hope on Why It is Needed

Introduction

Janet Hope:

"Since the 1980’s, the life sciences have undergone a process of rapid commercialization. The legal mechanism for this process of commercialization has been the expansion of intellectual property (IP) protection to inventions that were previously regarded as unpatentable. The result has been a literally exponential increase in applications for biotechnology patents.

These patents not only protect inventions that are valuable as end products; they also protect early stage inventions and research tools. Advances in biotechnology require the use of many of the latter, for which researchers must obtain licenses from patent owners. A good example is “golden rice”, which utilized more than 70 different patented procedures and processes. To get permission to use all of these tools, scientists enter into multiple negotiations for each piece of IP. These mounting transaction costs can retard, and in some cases completely undermine, their scientific projects. Even if they are not prevented from pursuing research itself, institutions may find that the rights of other IP holders prevent them from commercializing the fruits of their labor.

In biomedicine, there are considerable social costs associated with working within this expensive proprietary system. These stem from the fact that such costs are beyond the resources of the smallest participants, or would-be participants, in the industry. Market forces will naturally tend to direct efforts by big private sector players to where there is the most substantial return on investment. This means research goals are inevitably being narrowed to those that will be most profitable, though not necessarily most useful. Thus, it is often not commercially worthwhile for the biomedical industry to devote significant resources to addressing medical or social needs, such as drugs for very common diseases like tuberculosis or malaria.

Similarly, in agriculture, breeding strategies will be oriented towards major crops in developed country markets, not towards finding genetic traits with characteristics that are useful to poor farmers. The last few years have also seen a series of mergers and acquisitions that have dramatically consolidated the industry, with a huge portion of fundamental research tools ending up in the hands of a tiny number of big multinationals. This level of industry concentration has inevitably led to the overpricing of technologies and the exclusion of innovative start-ups and public sector institutions. This, in turn, means that smaller firms can’t get a foot in the door.

This situation has been described as a “tragedy of the anticommons.” In contrast to the tragedy of the commons, when a public resource is overused because there is no one owner to regulate it, a tragedy of the anticommons occurs when a resource is underused because it has been divided up by a number of owners who may not be willing to agree or cooperate with one another."


Can Open Source Licensing Work With Biotechnology?

"When I spoke to Bruce Perens, who helped define the basis for open source development in his aptly titled document, The Open Source Definition, he took the view that the open source biotechnology movement does not aim to create a particular legal framework. Instead, it is a form of social engineering. There is no question that one could produce a legally binding open source license in biotechnology if one wanted to—the real question is whether anyone will use it.

The different proprietary regimes that prevail in the software and biotechnology contexts are important to consider in answering this question. Both software code and biotechnology innovations are protected under a mixture of licensing systems , but the primary one in software is copyright, whereas in biotechnology it is patents. The cost of patent protection can be substantial, whereas copyright protection arises automatically and without cost to the owner. Also, patent fees are usually at least partly recovered from licensees under the remuneration clauses in a proprietary license.

Second, standardized licenses appear to be important for keeping transaction costs low in open source software, but this approach may be less applicable outside a digital context. Biotechnology innovations are far more diverse in terms of composition than software, which is essentially non-physical and instantly reproducible. Defining rights in living biological materials, given their capacity for self-replication and mutation, is difficult. Determining what constitutes an improvement to a licensed biological technology is also challenging. This aspect would be especially critical in open source applications. As stated earlier, open source licenses generally require that improvements to the technology be made available to the other users. Naturally, this is far more difficult when the medium is biological matter, as opposed to digital information.

To explore how open source might translate into the biotechnology context, it is necessary to characterize it in terms of generalized principles, as distinct from software-specific features. Although it is becoming a popular subject of study for people in many disciplines, no unifying principle has yet emerged as the dominant approach. I have chosen to view open source development through the lens of a relatively new theory from the field of innovation management, known as User Innovation Theory


User Innovation Theory and Open Source Biology

Read the full entry on User Innovation Theory


Conclusion: Will the Open Source Software model work for biology?

"Proprietary approaches to intellectual property in biotechnology have the effect of consolidating knowledge and research tools into a smaller number of hands, stifling the diversity of research and increasing costs to users. Open source approaches to technology licensing and development offer the possibility of a partial solution to these problems. Open source approaches won’t always be applicable to material media, but there are many areas where they could effectively work.

The biggest determinant of open source’s adoption is whether the balance of costs and benefits will make it more attractive to IP owners than the proprietary approach. Of course, this is less likely the more a manufacturer is entrenched in proprietary IP. Thus, it is important to note that even if there are only one or two adopters of open source in a given industry sector, the actions of those adopters can have a big impact. By undermining customers’ willingness to pay for access to tools from a proprietary source which they can get at a lower cost from an open one, a small number of open source adopters can shift the balance of competition in a sector away from proprietary technologies. In this sense, open source principles have the power to transform industries. This is why Microsoft is wary of Linux, and it is also why open source has the potential to break the IP logjam in biotechnology.

People often conflate the successes and failures of open source software with the possibility of open source biology. In this connection, people bring up the current copyright litigation surrounding Linux distributors and the overall non-profitability of such companies as illustrations that the future of open source software is uncertain. While it is true that there are not yet any stand-alone open source software businesses that are actually profitable, this is also largely the case for the traditional business model in biotech. Despite the hype and the high market valuations of the late 1990’s, biotechnology has not yet been a profitable industry overall. In any case, it is not necessary to see open source as a stand-alone business model. Instead, it should be viewed as a business strategy that may be used to complement other strategies.

In the end, the proof for the viability open source biotechnology is not tied to the ultimate success of open source software. Open source software is simply the basis for an analogy—the seed of an idea rather than a rigid formula for success." (http://www.gene-watch.org/genewatch/articles/18-1Hope.html)



Examples

Open Source Biotechnology in Agriculture

"Researchers in Australia have devised a method of creating genetically modified crops that does not infringe on patents held by big biotechnology companies. The technique will be made available free to others to use and improve, as long as any improvements are also available free." (http://business-times.asia1.com.sg/sub/views/story/0,4574,144880,00.html)

The Economist on What is already happening

Open Source Biotechnology, from The Economist

“open-source approaches have emerged in biotechnology already. The international effort to sequence the human genome, for instance, resembled an open-source initiative. It placed all the resulting data into the public domain rather than allow any participant to patent any of the results. Open source is also flourishing in bioinformatics, the field in which biology meets information technology. This involves performing biological research using supercomputers rather than test-tubes. Within the bioinformatics community, software code and databases are often swapped on “you share, I share" terms, for the greater good of all. Evidently the open-source approach works in biological-research tools and pre-competitive platform technologies. The question now is whether it will work further downstream, closer to the patient, where the development costs are greater and the potential benefits more direct. Open-source research could indeed, it seems, open up two areas in particular. The first is that of non-patentable compounds and drugs whose patents have expired. These receive very little attention from researchers, because there would be no way to protect (and so profit from) any discovery that was made about their effectiveness. To give an oft-quoted example, if aspirin cured cancer, no company would bother to do the trials to prove it, or go through the rigmarole of regulatory approval, since it could not patent the discovery. (In fact, it might be possible to apply for a process patent that covers a new method of treatment, but the broader point still stands.) Lots of potentially useful drugs could be sitting under researchers' noses.

The second area where open source might be able to help would be in developing treatments for diseases that afflict small numbers of people, such as Parkinson's disease, or are found mainly in poor countries, such as malaria. In such cases, there simply is not a large enough market of paying customers to justify the enormous expense of developing a new drug. America's Orphan Drug Act, which provides financial incentives to develop drugs for small numbers of patients, is one approach. But there is still plenty of room for improvement—which is where the open-source approach might have a valuable role to play." (http://www.economist.com/displaystory.cfm?story_id=2724420)

More Information

See the entry on Open Biology

PhD thesis by Janet Hope dowloadable at http://rsss.anu.edu.au/~janeth/OpenSourceBiotechnology27July2005.pdf

Chapter on OS biology is at http://rsss.anu.edu.au/~janeth/OSBiotech.html