Regenesis

From P2P Foundation
Jump to navigation Jump to search


Description

"Imagine a future in which human beings have become immune to all viruses, in which bacteria can custom-produce everyday items, like a drinking cup, or generate enough electricity to end oil dependency. Building a house would entail no more work than planting a seed in the ground. These scenarios may seem far-fetched, but pioneering geneticist George Church and science writer Ed Regis show that synthetic biology is bringing us ever closer to making such visions a reality.

In Regenesis, Church and Regis explorethe possibilities—and perils—of the emerging field of synthetic biology. Synthetic biology, in which living organisms are selectively altered by modifying substantial portions of their genomes, allows for the creation of entirely new species of organisms. Until now, nature has been the exclusive arbiter of life, death, and evolution; with synthetic biology, we now have the potential to write our own biological future. Indeed, as Church and Regis show, it even enables us to revisit crucial points in the evolution of life and, through synthetic biological techniques, choose different paths from those nature originally took.

Such exploits will involve far more than just microbial tinkering. Full-blown genomic engineering will make possible incredible feats, from resurrecting woolly mammoths and other extinct organisms to creating mirror life forms with a molecular structure the opposite of our own. These technologies—far from the out-of-control nightmare depicted in science fiction—have the power to improve human and animal health, increase our intelligence, enhance our memory, and even extend our life span.

A breathtaking look at the potential of this world-changing technology, Regenesis is nothing less than a guide to the future of life."


Review

Derek Jacoby:

"Although the book is aimed at a non-technical general audience, the science is explained in excellent detail and is well-referenced for further study.

As the book documents, we’re in the middle of an exponential increase in genomics capabilities that dwarfs even the pace of change in the computer industry. In such a rapidly changing field if you can imagine a plausible technical approach to a problem, no matter how difficult or cumbersome it may be, then soon it’s likely to become easy.

To give an example of an idea long discussed in science fiction, the book addresses re-creating extinct species. Surprisingly, there is already a successful example of this having occurred! The Pyrenean ibex, or bucardo, is a type of mountain goat that went extinct in 1999. But before the last ibex died, researchers scraped a few tissue cells from the ear of the last surviving ibex. They were able to induce the skin cells to become stem cells, and then in a process called interspecies nuclear transfer cloning they were able to fuse those stem cells with de-nucleated donor goat eggs, implant the eggs into domestic goats, and successfully birth a living ibex. By extension, the book examines the implications of reviving the wooly mammoth, or even neanderthals.

Similar detailed examples and discussions take the reader through the potentials of synthetic biology to transform fuel production, food production, waste processing, medicine, and even engineering of the human genome to produce Homo evolutis. Church’s background is in directed evolution — he invented many of the most powerful techniques to rapidly evolve portions of a genome to possess specified characteristics. To hear the inventor of such a powerful technology explore the ramifications of it is a real treat. Society will be exploring the issues raised in this book for many years — how to take advantage of the ability to re-engineer life while protecting against the risks that such a powerful technology must bring.

Refreshingly, in Church’s view protecting against those risks need not exclude amateurs and citizen scientists. Regenesis proposes a licensing scheme, but much more akin to a driver’s license than a formidable hurdle, and suggests a model where a combination of engineering techniques and basic shared procedures is sufficient to protect against any reasonable threats to safety while still ensuring the widest possible access to the technology.

Regenesis provides an accessible and engaging introduction to the revolutionary potentials of synthetic biology and should be of interest to both experts and a general science audience." (http://radar.oreilly.com/2012/11/george-church-and-the-potential-of-synthetic-biology.html)


More Information